Snow depth estimation using UAV-based LiDAR and photogrammetry

(And my research experience in Tasmania)

Ben Vander Jagt EGLR Fall Technical Meeting 10/25/2013

Outline

- Why is snow important
- Overview of NSF EAPSI fellowship in Tasmania
- Data collection
- Methods
 - Photogrammetry
 - Computer Vision
 - Statistics
 - Calculus
- Results

Background

Snowfall divided by annual runoff (Barnett et al. Nature, 2005)

Background

- Water is life, snow is water.
 - Municipal water supply (75% for Western States)
 - Agriculture
 - Recreation
- Think of snow as a reservoir
 - releasing water when needed most.

Background

Dissertation focused on <u>remotely</u> estimating snow depth/water equivalent

- Hand measurements not very efficient!

- ✓ Mainly use spaceborne passive microwave techniques
 - Coarse resolution (8x14 km).
 - Physics are difficult; scaling problems.
 - o Lets go micro!

Unmanned Aerial Vehicles (UAV's)

- Lower cost
- Easy to maintain
- Excellent for boring and/or dangerous data collection.

High Resolution!

Host Researcher

Arko Lucieer
University of Tasmania
Hobart, Tasmania, Au

Lab group- Terra Luma

Specialize in UAV-based remote sensing

Purpose

- 1. To use Lidar and photogrammetric techniques aboard a UAV to determine snow depth
 - Cost effective ✓
 - − High Resolution ✓
 - High Accuracy?

2. Related to #1, accurately georeference the point cloud, using GPS/IMU, ground control, and photogrammetry methods.

LiDAR

- **Laser ranging** instrument sends light pulse, waits for return. Records time of travel.
- Need to know position and orientation of instrument to to do accurate mapping.
- Timing is <u>very important</u>
- Expensive technology in mapping industry- ~\$500,000
- Automotive grade lidar systems available- ~\$10,000... <u>lightweight</u>

Photogrammetry

- determining geometric properties of objects from images
- Need > 1 images to reconstruct 3D
- Been around for ages, still a hot topic.

Components

- 1. Octocopter
- Dual Frequency GPS reciever (and base station)
- Microstrain IMU (MEMS)
- 4. Canon DSLR Camera
- 5. Ibeo Lux Lidar

Octocopter

GPS

Study Site

Mount Field Nat'l Park

At base of Mount Mawson/Lake Dobson

Lat: -42.68 S Lon: 146.59 E

"One of two mountains in Tasmania with downhill ski facilities"

Data Collection

Set Ground Control

Survey Ground Control

Pray (that UAV doesn't crash)

Fly UAV (Lidar and Photogrammetry)

Work with the local indigenous wildlife

Original Methodology

GPS - X, Y, ZIMU- pitch, roll, yaw Kalman Filter (GPS + IMU)

Lidar Equation Form --->
$$egin{bmatrix} x \\ y \\ z \end{bmatrix} = p_t + R_b^m [R_s^b r^s + a^b]$$

Original Methodology

- Use onboard GPS-IMU for initial point cloud generation
- Use Ground Control Points (GCP's) to determine accuracy of navigation system
 - This requires adequate ground control in each image.
 - It also requires <u>tracking</u> the control through each image (otherwise I have to make manual measurements on 1000 images!)
 - Bundle adjustment
- Evaluate GPS/IMU accuracy

Camera Position **Xo,Yo,Zo,ω,φ,κ**

Bundle Adjustment

- Technique has been around for a while
 - Lots of recent development in computer vision community.
 - Optimization for non-linear iteration
- Useful with large strips of photos.
 - Minimize reprojection error over whole block.
- Typically GCP's are used.
 - NOT NECESSARY, used EOP's directly. (Xo,Yo,Zo,ω,φ,κ)

Bundle Adjustment

- Use epipolar geometry to match overlapping pixel from images once camera pose is known.
- Problem Snow is homogeneous, difficult to match pixels.
- Solution- Do UAV's fly low enough for adequate image texture?
- Use photogrammetric intersection to estimate "real world" 3D coordinates of snow surface

Epipolar Geometry

Flight Paths

3 Flights Total

- Redudancy purposes
- Forgot to turn on camera for second flight

Camera operating at ~3.5 Hz...lots of images! Lidar (500,000 points) Heaps of Data!!!

Lidar Point Cloud

Footprints _____

Photogrammetric Point Cloud

111 million points!

Sparse

Results thus far (snow surface)

	Lidar	Indirect BA (truth)	Direct BA
X	0.047 m	0.05 m	~0.05 m
Υ	0.056 m	0.041 m	~0.05 m
Z	0.123 m	0.052 m	0.19 m

Lidar error in vertical is biased by ~12 cm (GPS/IMU), horizontal good

Direct BA is biased by ~19 cm in the vertical (camera positions biased)

Assuming the bias is repeatable, the 1σ error in total snow depth is 9 cm for lidar measurements.

Lever arm discrepancy

$$r_{c}^{m} = R_{wfk} \begin{bmatrix} X_{ant}^{m} - X_{cam}^{m} \\ Y_{ant}^{m} - Y_{cam}^{m} \\ Z_{ant}^{m} - Z_{cam}^{m} \end{bmatrix}$$
 Known Xo,Yo,Zo (camera) ω, φ, κ (camera)

Ax = y(linear)

$$y + Ax = 0$$

$$x = (A'A)^{-1}A'y$$

EARTHSCIENCES

Large errors in X,Y, less in Z (not much Z variation)

- Timing issue?
- Camera Calibration (temperature)?
- Gross mathematical misconduct on my part?

Conclusion

- Snow can be effectively mapped with a UAV (in theory)
 - Better stochastic modeling of errors
- Two complimentary methods can be used for point cloud generation
 - Lidar
 - Photogrammetry (via BA)
- Improving UAV and sensor technology will improve accuracy, scale, and reliability
- The world will be a better place

